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Grand Challenges of 21st Century 

 Food security

 Water security

 Energy security

 Health security

 Climate security

 Environmental security

 Ecosystem sustainability

 Water-energy-food-environment nexus

 Survival of humanity is at risk without ensuring the 
above.



Environmental and Water Resources 

Engineering

 Planning, design, operation, and management of water 
resources systems 

 Water resources systems for 

 drainage

 flood control

 irrigation

 water supply

 hydropower

 river training

 navigation,

 recreation, and others



Hydrologic Engineering

 For planning, design, operation, and management of 
environmental and water resources systems

 Some key Questions

 What is the peak discharge for a given rainfall event? 

 How often does a discharge of a given magnitude occur?

 What is the volume of discharge resulting from a rainfall 
event and how is it distributed in time?

 How much and at what rate does rain water infiltrate into the 
ground?

 How is the infiltrated water distributed into the vadose zone?

 What are the space-time characteristics of droughts?

 What should be the space-time monitoring of hydrologic 
data?



Hydrologic Engineering

 Some key Questions

 What is the rate of groundwater depletion?

 What is the rate groundwater recharge?

 What is the velocity distribution in open channel flow?

 What is the concentration of sediment in open channel 
flow? 

 What is the sediment discharge of a river?

 What is the pollutant discharge of a river?

 What is the optimal design of a canal?

 What is the reliability of a water supply system?



Application of Hydrology

 Rainfall-runoff modeling

 Watershed management

 Drainage design

 Pavement design 

 Flow frequency analysis

 Dam and reservoir design

 Irrigation management

 Environmental management



Application of Hydrology (contd.)

 Velocity Distribution

 Flow modeling

 Scour modeling

 Bed profiles

 Sediment Concentration and Sediment Discharge 

 Environmental pollution

 Bed forms

 Sedimentation



Application of Hydrology (contd.)

 Hydraulic Geometry 

 River training

 Restoration

 Optimal Canal Design

 Irrigation

 Drainage

 Water Distribution System Design

 Design a water supply system

 Reliability of a water distribution system



Hydrologic Engineering Landscape

 Methods of Solution

 Empirical

 Information theoretic 

 Probabilistic and stochastic

 Physical



Development of a Unifying Theory

 Entropy Theory

 Entropy: a measure of disorder, chaos, uncertainty, 
surprise, or information

 Information reduces uncertainty; more information means 
less uncertainty

 Uncertainty increases the need for information; more 
uncertainty means more information is needed.



Entropy, Information and Uncertainty

 Concept of information
 Closely linked with the concept of uncertainty or surprise 

 Assume a random variable X = xi
 pi = 1 (pj = 0, j ≠ i) – No surprise about occurrence of event X = 

xi.

 If pi is very low, say 0.01 and if actually xi occurs, then 
there is a great deal of surprise as to its occurrence and 
our anticipation of it is highly uncertain.

 The information content of observing xi or the 
anticipatory uncertainty of xi prior to the observation is 
a decreasing function of the probability p(xi)



Entropy, Information and Uncertainty

 Information is gained only if there is uncertainty about an 
event.

 Uncertainty suggests that the event may take on different 
values.

 The value that occurs with a higher probability conveys less 
information and vice versa.

 Shannon (1948) argued that entropy is the expected value 
of the probabilities of alternative values that an event may 
take on.

 The information gained is indirectly measured as the 
amount of reduction of uncertainty or of entropy.



Various Interpretations of Entropy

Measure of Surprise

Measure of Complexity 

Measure of Departure from 
Uniform Distribution

Measure of Interdependence

Measure of Dependence

Measure of Interactivity

Measure of Similarity

Measure of Uncertainty

Measureof Information

Measure of Randomness 

Measure of Unbiasedness 
or Objectivity

Measure of Equality

Measure of Diversity

Measure of Lack of Concentration

Measure of Flexibility



Types of Entropy

 Real Domain

 Shannon Entropy

 Tsallis Entropy

 Exponential Entropy

 Kapur Entropy

 Renyi Entropy

 Cross or relative Entropy (Kullback-Leibler entropy)

 Others

 Frequency Domain

 Burg Entropy

 Configurational Entropy

 Relative Entropy



Development of Entropy Theory
 Elements of Entropy Theory

 Definition of Entropy

 Principle of Maximum Entropy (POME)

 Principle of Minimum Cross-Entropy (POMCE)

 Theorem of Concentration

*Singh, V.P. (2013). Entropy Theory and its Application in Environmental and 

Water Engineering.  642 pp., John Wiley.

* Singh, V.P. (2014).  Entropy Theory in Hydraulic Engineering. 785 pp., 

ASCE Press, Reston, Virginia.

* Singh, V.P. (2015). Entropy Theory in Hydrologic Science and Engineering. 

824 pp., McGraw-Hill Education, New York.

* Singh, V.P. (2016). Introduction to Tsallis Entropy Theory in Water 

Engineering, 434 pp., CRC Press, Boca Raton, Florida.



Concept and Formulation of POMCE

 Building blocks of the entropy theory.

 A powerful principle.

 Formulated by Kullback and Leibler (1951) and detailed in
Kullback (1959).

 Consider a probability distribution Q = {q1, q2, ..., qN} for a
random variable X which takes on N values.

 To derive the distribution P = {p1, p2, ..., pN} of X, one should
minimize the distance between P and Q.

 Closer the P and Q, greater will be the uncertainty.

 POMCE is expressed as,

(1)

where D is the cross-entropy or distance
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 If no prior distribution is available in the form of constraints
and Q is chosen to be a uniform distribution,

 Equation (1) takes the form,

(2)

where, H is the Shannon entropy.

(3)

 Minimizing D(P, Q) is equivalent to maximizing H.

 Since D is a convex function, its local and global minimum are
same.

 A posterior distribution P is obtained by combining a prior Q with
specified constraints.

 Minimization of cross- entropy results asymptotically from Bayes'
theorem.
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 POMCE involves two major concepts,

 A prior probability distribution.

 A measure of distance.

 POMCE is a measure between two probability distributions,

 One related to the system to be characterized

 Assumed to be unknown.

 One related to the model chosen to describe the system.

 Models to characterize a system,

 Set of moments.

 Mean and any symmetric part of the covariance matrix of the
system called constraints.

 POMCE measure is obtained by minimizing the
discrimination information with respect to the given prior
distribution over all probabilistic descriptions of the system
which concur with the given constraints.

 One of the case is of root square sense as the measure of distance.

20
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Properties of POMCE

 KL measure has the following properties,

 The distance measure D(P, Q) is non-negative,

 The distance measure D(P, Q) is asymmetric,

NOTE: This is not a true distance between distributions,
because it does not obey the triangle inequality and is not
symmetric.
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Examples POMCE

 Assuming first Q as uniform, show that then P as
uniform.

Let Q be a uniform distribution: . Then one obtains,

where H is the Shannon entropy.

Now if P is uniform , then

=>

However, it turns out that the measure of,

is symmetric, i.e., W(P, Q)=W(Q, P).
 Measure of symmetric cross-entropy or W divergence (Lin, 1991).
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Shannon Entropy: Discrete 

Random Variable
 Probability distribution

 N outcomes (xi, i=1, 2, …, N) of a random variable X or a 
random experiment

 Shannon defined a measure H as a function of 
probabilities as

 Satisfies a number of desiderata

 Logarithm is to the base of 2
 Entropy is measured in bits
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Shannon Entropy: Discrete Random 

Variable 
 The gain function describing the information from an 

event as a log function:

where ΔIi is the gain in information from an event i
which occurs with probability pi, and N is the number of 
events. Thus, entropy is the expected value of the gain 
function and is also written as

𝐻 = 

𝑖=1

𝑁

𝑝𝑖∆𝑝𝑖

Δ𝐼𝑖 = − log 𝑝𝑖 ,

𝑖=1

𝑁
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Shannon Entropy: Continuous 

Random Variable

 Let X be a random variable with probability density 
function f(x). Then, the Shannon entropy, denoted by 
H(x), of X or H(f) is:

 Logarithm is to the base of 2, and entropy is measured 
in bits. The base can also be e or 10.
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Principle of Maximum Entropy (POME)

 In practice, it is common that some information is 
available on the random variable.

 Choose the probability distribution that is consistent 
with the given information.

 Choose the distribution that has the highest entropy.

 Principle of Maximum Entropy (Jaynes, 1957)



Principle of Maximum Entropy (POME) (Contd.)

 Principle of Maximum Entropy (Jaynes, 1957)

 Assignment of probabilities which maximizes 
entropy subject to the given information.

 Laplace’s principle of insufficient reason

 All outcomes of an experiment should be 
considered equally likely unless there is 
information to the contrary.

 Entropy defines a kind of measure on the space of 
probability distributions.



Concentration Theorem
 Spread of lower entropies around the maximum entropy values. For a 

random variable X with PDF f(x), the Shannon entropy, denoted by H(x), of 
X will be in the range:

where  Hmax is given by POME. For N observations and n probabilities, the 
concentration of these probabilities  near the upper bound Hmax is given by 
the theorem. Asymptotically, 2NΔH  is distributed as χ2 with n-m-1 degrees 
of freedom. m= number of constraints. Denoting the critical value of χ2 for 
k=n-m-1 degrees of freedom at 95% significance level as F, ΔH is given in 
terms of the upper tail area 1-F (=0.05) as:

One can compute Hmax for a known PDF and the value of χ2 for a given 
significance level (say, 5%) from χ2 tables. Then, one computes the value of 
2NΔH which yields ΔH. One then  determines the range in which 95% of the 
values will lie and evaluates if the majority of realizations will follow the 
known PDF.   
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Methodology for Application of Entropy Theory

 Define Shannon entropy. 

 Specify constraints.

 Maximize entropy using POME.

 Use the method of Lagrange Multipliers.

 Determine Lagrange multipliers in terms of 
constraints.

 Probability distribution in terms of Constraints.

 Determine the maximum Shannon Entropy.

 Derive the desired result.



Specification  of Constraints

 Constraints
 Constraints should be simple. 

 Constraints should be defined such that they are more or less 
preserved in the future. 

 Constraints should be defined as far as possible in terms of the laws 
of mathematical physics-mass conservation, momentum 
conservation, and energy conservation-or constitutive laws. 

 Total probability

 Constraints

where g(x) is some function of x. 
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Maximization of entropy

Method of Lagrange multipliers: 

Lagrangian function L can be expressed as:

Applying the Euler-Lagrange calculus of variation for differentiating  L with 

respect to f(x), noting f as variable and x as parameter, and equating the 

derivative to zero, one gets: 

The next step is to determine the Lagrange multipliers.

L = −න
𝑎

𝑏

𝑓(𝑥)𝑙𝑛𝑓(𝑥)𝑑𝑥 − (𝜆0 − 1)න
𝑎

𝑏

𝑓(𝑥)𝑑𝑥 −

𝑖=2

𝑛

൧𝜆𝑖[𝑔𝑖(𝑥)𝑓(𝑥)𝑑𝑥 − )𝑔𝑖(𝑥

𝑓(𝑥) = exp[ 𝜆0 + 𝜆1𝑔1(𝑥) + 𝜆2𝑔2(𝑥)+. . . +𝜆𝑛𝑔𝑛(𝑥)]



Determination of Lagrange Multipliers
 Use of f(x) determined earlier in the specified constraints leads to:

and

 Differentiate the zeroth Lagrange multiplier with respect to other Lagrange 
multipliers:

 Express the zeroth Lagrange multiplier as

and then take the derivatives.

 Equate the derivatives determined in the above two ways.

 Obtain a set of equations leading to the expression of the Lagrange multipliers in 
terms of constraints. 
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Hydrologic Problems 
 1. Physical

 Physical law in the form of a flux-concentration relation

 A hypothesis on the CDF of flux or concentration 

 Examples:  Rainfall-runoff modeling, infiltration, soil moisture  movement, 
velocity distribution, hydraulic geometry, channel cross-section, sediment 
concentration and discharge, sediment yield, river bed profile, and rating 
curve  

 Statistical
 Empirical

 Examples: Frequency analysis, parameter estimation, network evaluation 
and design, flow forecasting, spatial analysis, grain size distribution, 
complexity analysis, and clustering  

 Mixed
 Partly empirical and partly physical

 Examples: Geomorphic relations for elevation, slope, and fall; and 
reliability of water distribution systems; hydraulic geometry 



Flux-Concentration Relation 

Fundamental Assumption
 Let X be flux and h be the associated concentration. In 

many problems the time-averaged flux can be 
considered as a random variable. For example, in open 
channel flow, time averaged velocity at a given cross-
section can be considered as a random variable.

 If X is space-averaged, it can be considered as a random 
variable. For example, space-averaged infiltration 
capacity rate can be considered as a random variable.  

 Space-averaged soil moisture can be considered as a 
random variable.



Fundamental Hypothesis

Let X be flux and Y be the associated concentration. The CDF of X can 
be expressed as

where α0 and α1 are parameters and α2 is exponent, and D is the 
maximum value of y. Here x is a specific value of X and y is a specific 
value of Y. Often, α0=0 or 1, and α1=1 or -1, and α2=1. As an example, the 
CDF of velocity of flow in open channels is often considered with α0=0, 
α1=α2=1 and is written as

Parameters α0, α1, and α2 need to be determined empirically from 
data. From a sampling standpoint, all values of y are equally likely to be 
sampled. This is a simple hypothesis but is not entirely unrealistic. 
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Hydrologic 
Forecasting

Precipitation 
Time Series 

Analysis

Rating Curve 
Design

Morphological 
Analysis

Velocity 
Distribution

Water 
Distribution 

Network

Water Resources 
Assessment

Water Quality
Wastewater 

Treatment Plant 
Performance

Risk Assessment



Hydrologic Problems for Modeling

1. Entropy Maximization: Application of POME

 Frequency Analysis and Parameter estimation

 Network Evaluation and Design

 Spatial Analysis

 Geomorphologic Analysis

 Grain size distribution
2. Coupling with Theory of Minimum Energy 
Dissipation Rate

. Hydraulic geometry



Hydrologic Problems for Modeling 

(Contd.)
3. Coupling with Flux-Concentration Relation

 Infiltration 

 Soil moisture movement in vadose zone

 Rainfall-runoff relation

 Rating curve

 Flow duration curve

 Hydraulic geometry

 Erosion and Sediment transport

 Debris flow

 Longitudinal river profile

 Velocity distribution

 Sediment concentration



Methodology for Application of 

Entropy Theory
 Definition of entropy: Shannon, Tsallis, or others

 Specification of constraints

 Formulation of fundamental hypotheses: 
physical/hydraulic

 Maximization of Shannon Entropy: POME

 Lagrange Multipliers

 Determination of Lagrange Multipliers in terms of 
constraints

 Entropy Distribution in terms of Constraints

 Maximum Shannon Entropy

 Derivation of the desired result



Infiltration Equations

 Infiltration: The rate of entry of water at the soil 
surface

 Potential infiltration rate

 Actual infiltration rate

 Steady infiltration rate

 Cumulative infiltration rate

 Maximum soil moisture retention

 Soil porosity



Constraints on Infiltration

 Total probability constraint

 Moment constraints

where gr(I), r =1, 2, …, n, represent some functions of infiltration rate I, 
n denotes the number of constraints, and  is the expectation of gr(I). If 
r=1, it would correspond to the mean infiltration rate; likewise, for r=2, 
it would denote the variance of I. 
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Maximization of the Shannon  

Entropy 

 Method of Lagrange multipliers
 Entropy-based probability distribution of infiltration rate

 Lagrange Multipliers

 Determination of Lagrange Multipliers in terms of constraints

 Entropy Distribution in terms of Constraints

 Maximum Shannon Entropy

 In general, n=1.
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Derivation of Infiltration 

Equations

 Horton equation (1938)

 Kostiakov equation (1932)

 Generalized Kostiakov equation

 Smith-Parlange equation (1972)

 Philip two-term equation (1957)

 Green-Ampt equation (1911)

 Overton overton equation (1964)

 Holtan equation (1961)

 Singh-Yu equation (1990)



Horton Equation
 Steady or constant rate denoted as Ic and Initial infiltration rate 

denoted as I0

 Fundamental hypothesis:  Let i be the excess infiltration rate,  J the 
excess cumulative infiltration, and S the maximum excess soil moisture 
retention. The cumulative probability distribution function F(i) is 
defined as

 Constraint:  Total probability constraint

 Probability distribution of the Horton equation: Uniform
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Horton Equation (Contd.)
 Entropy of the Horton equation

 Horton equation

 Physical interpretation of k
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Horton Equation

 Robertsdale loamy sand (Entropy 2.28 Napiers) 
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Horton Equation (Robertsdale loamy sand (S=0.8S)
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Conclusions

 There are two fundamental issues: (1) Hypothesis on flux-
concentration, and (2) specification of constraints based 
on laws of physics.

 The use of entropy theory leads to explicit expressions of 
flux in terms of concentration or time, as the case may be.   

 Parameters in the derived relations seem to have physical 
meaning.

 Entropy theory provides  a probabilistic description and 
makes a statement on uncertainty. This has important 
implications for sampling and model reliability.   
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